Synopsys and SJSU – Full ‘STEM’ Ahead

According to the Institute for Electrical and Electronics Engineers, 80 percent of future professions will require science, technology, engineering and math (STEM) expertise. It’s a tall order that can only be filled through the collective efforts of industry-university partnerships, such as the Synopsys partnership with San Jose State’s College of Engineering.

For more than ten years, the Synopsys Integrated Circuit Design lab has been serving college students in STEM programs. The lab enables engineering students to do full custom analog and digital Integrated Circuit design for both academic and research purposes. Synopsys employee and SJSU Engineering alumna, Cleo Costello (’85 and ’87), played a key role in building the lab in conjunction with Dr. Belle Wei, Carolyn Guidry Chair, Engineering Education & Innovative Learning and former Dean, SJSU Charles Davidson School of Engineering; and Chair, Center for Advancing Women in Technology.

“The relationship between San Jose State University and Synopsys is symbiotic. We have a shared purpose to advance more women from diverse backgrounds in STEM careers. The goal is systemic and sustained change.”

— Dr. Belle Wei

Annually, Synopsys participates in a variety of SJSU engineering career fairs, and the Engineering Awards banquet. Synopsys is a sponsor of the Silicon Valley Women in Engineering Conference (WiE), where students learn, network and build community. WiE is the largest event of its kind in Silicon Valley and is produced in collaboration with the Society of Women Engineers at San Jose State University.

In addition, Synopsys continues to explore opportunities for mentoring and sponsorship of formative activities for SJSU students, including engagement with the Society of Latinx Engineers and other organizations that support women and diversity in STEM. In the past three years, Synopsys has hired more than 50 SJSU students for internship roles. Synopsys believes that hiring a diverse workforce and working to build a strong community where every voice is heard fosters innovation and drives better business results.

SJSU undergrad and grad students are encouraged to apply for Synopsys Internships to hone their tech skills and gain valuable exposure to professional teams, projects, and workplace environments. Interns at Synopsys learn how to formulate goals, present ideas, and position themselves as individuals with unique strengths as they progress toward graduation and career pursuits. Along with a competitive salary, they gain exposure to innovative EDA, semiconductor IP, and software security technologies as well as real-world work experience and research opportunities alongside engineering and business experts, Synopsys executives, and community leaders.

SJSU is not only a leading supplier of engineering talent to Synopsys and other Silicon Valley tech companies, but as a member of the Technology Pathways Initiative, it is also one of California’s first universities to establish interdisciplinary computing degree programs to attract more college women to STEM studies and careers.

Synopsys’ Commitment to Diversity

To power the New Era of Smart Everything, Synopsys aims to solve complex challenges that impact every sector of the modern world and people from all walks of life. “Synopsys Inclusion & Diversity initiatives aim to attract and retain a pool of engineering talent that reflects the diversity of our world,” said Costello. “We are committed to being leaders in hiring and developing talent among women and other underrepresented groups.”

“There’s a need for more balance in STEM degree programs and career opportunities; from engineering roles, to leadership positions, to boardrooms. The balance should address gender, ethnicity and socioeconomic status. Achieving better balance will strengthen companies, industries and society. This is our goal at Synopsys, design Inclusion and Diversity initiatives that help achieve better balance.”

— Chi-Foon Chan, President and co-CEO, Synopsys Inc.

We know a pool of engineering talent is needed to fuel tech innovations that drive economic growth and prosperity and underpin many aspects of social well-being. But when we look into that pool, does it reflect the world we serve and all its diversity? The answer is, not yet; there’s more that can be done.

Get Involved

Synopsys and the Charles W. Davidson College of Engineering want to help students to make the transition from college to career:

SJSU Professor Badawy is Enlightening Photovoltaic Convertors

How would you like your residential solar photovoltaic system to operate at maximum efficiency, regardless of whether shade hits your solar panels? SJSU Electrical Engineering professor Mohamed Badawy and his students have created a differential power-processing architecture for a partially shaded photovoltaic string that could increase the extracted amount of solar energy by 15-30% compared to conventional systems.

“The overarching purpose,” said Badawy, “is to develop new photovoltaic configurations that can extract as much energy as possible, while using low-cost interfacing systems to convert the harvested energy to usable levels.” This project is made possible by generous support from Fremont-based Delta Electronics (Americas), a global provider of power and thermal management solutions.

Any shade on solar panels leads to a lower amount of extracted solar energy from the system. And worse, when connected panels are exposed to shading conditions in a non-uniform manner, the shading not only affects the shaded panels but it also negatively impacts the output energy of all the panels connected to it. Badawy’s new technology eliminates this problem with a new redesign of differential power processing PV converters.

“We published two papers on it and are currently preparing two journal publications based on the experimental results we got, said Badawy. “The project results showed the system’s ability to increase the energy capture of PV panels by up to 30% under shading conditions while adding less than 10% of capital cost into the PV system.”

Highlights of the new architecture include an increase in PV lifetime, because it uses a ceramic capacitor vs. the older electrolytic capacitor; a modular design; and lower current ripple on both input and output sides.

Because Badawy is also a teacher, he’s kept an eye on the project’s effect on his students. Two students on this project just received their Master’s degrees and two more students are planning to pursue this project as their Master’s research. This project group includes female and Latinx students, a critical step in promoting the renewable energy research area at SJSU while diversifying the student body of SJSU research labs.

“The students were able to work on a practical problem under real pressure to deliver,” he said. “This certainly helped their technical, design and hardware skills to develop. Additionally, the students were always attending SJSU-Delta meetings to present their own work, which helped to develop their professional skills. They also learned how to build partnerships, which is a skill they will always need in their careers.”

The SJSU collaboration is part of Delta’s corporate social responsibility (CSR) program to partner with universities and institutions in the United States to nurture talent capable of developing next-generation renewable energy technologies, an initiative in line with Delta’s corporate mission, “To provide innovative, clean and energy-efficient solutions for a better tomorrow.”

“This experience has proved extremely rewarding for our staff, as we bridge the gap between industry and academia,” said Peter Barbosa, director of Delta’s Milan M. Jovanovic Power Electronics Lab in Raleigh, N.C. “The fresh perspectives we gained are invaluable as we solve some of the energy industry’s biggest challenges.”

New MS program in Artificial Intelligence Coming in Fall 2020

The Davidson College of Engineering is launching a new Masters of Science program in Artificial Intelligence (AI) in fall 2020. The first cohort of the MSAI program will be offered through Engineering Extended Studies with one of the College of Engineering’s off-campus corporate partners.

“With the launch of this program, our college continues to offer state-of-the-art degrees that drive today’s technological advances,” said Sheryl Ehrman, the Don Beall Dean of the College of Engineering. “Some people do programming and some build engineering systems: this program builds a bridge between the two groups, enabling traditional engineers to learn artificial intelligence technology and be able to apply it to their engineering professions.”

Xiao Su, chair of the Computer Engineering Department, said, “Although it is a relatively new field, artificial intelligence has already changed the world in many ways. There is a lot of potential in all areas of life and all fields, including finance and health care. The objective of our program is to fill in the gaps for people who would like to apply AI in their chosen profession, and know that they need preparation in order to succeed in the program.”

People who have math and programming backgrounds and experience, and ideally an engineering, science, mathematics, or computer science undergraduate degree, can use this Masters program to apply artificial intelligence technology to their engineering profession.

Students will primarily use Python programming in their courses and will work with TensorFlow and Pytorch–the two most popular libraries. They will learn regression, classification, decision trees, IU base algorithms, clustering, recommendation, neural network learning and deep reinforcement learning. “They will also learn GPU programming, which made deep learning possible,” said Su. “The combination of availability of GPU and the deep neural network is what ignites the current artificial intelligence evolution.”

“We thought of artificial intelligence in three layers,” Su continued. “The underlying layer is the algorithms to make the APIs and make the underlying technologies more efficient. The middle layer is “tool box” or API, and the top layer is the application layer. Graduate students in this program will be able to work with the middle and top layers. Students who select electives in machine learning, deep learning and reinforcement learning will be able to build tools and APIs that drive artificial intelligence. Other students who might be more application-oriented will be able to build engineering systems using AI technologies.”

Students will be expected to finish within two years. They will have immersive training in machine learning and artificial intelligence, as well as hands-on preparation and experience. They will learn the foundations, evolution and advancements in artificial intelligence, in order to understand not only the current technologies, but also to prepare to be part of the future of artificial intelligence.

“We pride ourselves on making this program hands-on,” added Dean Ehrman. ‘Hands-on’ is the thread that ties the whole program together, and that is what we are known for at Davidson College of Engineering.” Besides the final capstone project, each course has a project where students can work individually or in teams to build a system, prototype, or application.

“We plan to bring the program to the main campus starting Fall 2021,” said Su. “We want to explore our corporate partnerships first, which will allow us to get additional feedback and fine tune the enrollment process. We plan to gradually increase in size. There is a high demand for AI engineers!”

New Study Presents Mathematical Models to Pre-empt Gerrymandering

election map example

In a competitive district such as this illustration from the paper, the maximum support advantage of either party is at most 10%. These parameters can be selected by the redistributing commissions, including the number of competitive districts and the vote split.

The unfair and non-competitive political redistricting process known as gerrymandering could be solved using new mathematical models and computer implementation, according to a recent study by a San Jose State University research team that appeared in Computers & Industrial Engineering, an Elsevier publication.*

“Election and redistricting are political processes; we believe that software tools are needed to achieve political purposes,” said one of the paper’s authors, Dr. Jacob Tsao, a professor of Industrial Systems Engineering. “We present two mathematical optimization models to implement political fairness and competitiveness.” Both models are implemented with a case study of South Carolina.

There appears to be a growing movement against gerrymandering. In December 2019 a New York Times columnist observed that State courts in Pennsylvania and Virginia have thrown out gerrymandered maps, voters in Arizona, California and Michigan approved ballot measures to reduce gerrymandering, and similar measures could be on the ballot in 2020 in Arkansas and Oregon.

“Redistricting can be formulated and solved as a difficult purely mathematical problem, without any partisan biases; such efforts started as early as the 1960s but continued intermittently and sparsely,” wrote the San Jose State team in their study, hoping that their research will assist redistricting commissions and their staff members by developing a suite of mathematical models and their computer implementations to develop and optimize districting plans.

“Hopefully, this is a timely paper for the political redistricting work to occur across the United States in response to the ongoing 2020 US Census and in preparation for the 2022 election and beyond,” said Tsao. The team writing the paper included not only SJSU faculty and students but alumni as well. “The first author of this paper, Dr. Hongrui Liu, was an MS-Industrial & Systems Engineering (ISE) student about 15 years ago,” explained Tsao. “She and I published a journal paper in 2008 on the design of experiments, with an unconventional approach, based on her MS Project. She went on to earn a Ph.D. from the University of Washington in 2010. After working for several years in the energy industry, she joined SJSU ISE faculty in 2017.”

San Jose State’s math department is also thinking about politics, offering Math 10P (Mathematics in Politics) for the first time in spring 2020. The course description states: “Did you know that there’s a state in the U.S. where one party gets 52% of the vote, but nevertheless holds 75% of that state’s seats in Congress? Did you know that San Francisco, Oakland, Berkeley, San Leandro, and the state of Maine use a different system for counting votes than most of the rest of America?

“Believe it or not, the key to understanding all of that and more is math! In Math 10P, Mathematics in Politics, you’ll learn not only the mathematical secrets behind all of those phenomena, but also how, through politics, math impacts our daily lives and the future of America. Recommended for anyone with an interest in politics, current events, or in how math and politics affects our daily lives. Fulfills [the] Math/Quantitative Reasoning requirement.”

*“Mathematical models of political districting for more representative governments” by Hongrui Liu, Ayca Erdogan, Royce Lin (a SJSU MS-Industrial & Systems Engineering Student), and H.-S. Jacob Tsao. Computers & Industrial Engineering, an Elsevier publication. Volume 140, February 2020, 106265.