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Introduction

❑Large language models (LLMs) have garnered significant attention and 
widespread adoption across many fields, including healthcare [1].

❑Within healthcare, LLMs may be classified into

LLMs for the biomedical domain and

LLMs for the clinical domain based on the corpora used for 
pre‐training.

❑ In the last 3 years, these domain‐specific LLMs have demonstrated 
exceptional performance on multiple natural language processing tasks, 
surpassing the performance of general LLMs as well [1].

❑This not only emphasizes the significance of developing domain‐specific
LLMs, but also increases expectations for their applications in healthcare 
settings [2-4].

❑LLMs maybe used widely in pre-consultation, diagnosis, and 
management, with appropriate development and supervision. [5-7]

❑Additionally, LLMs hold tremendous promise in assisting with medical 
education, medical writing and other related applications. [8-10]



LLM applications 
in Patient care

Figure: Potential touch points along a patient's care 
journey for the application of large language models 
(LLMs) [1]



Patient-Graph Model for 
Identifying Infectious Hot-spots in 

an Urban Environments



Introduction

Infectious diseases pose a serious threat to public 
health and well-being, especially in densely 
populated urban areas. 

Traditional methods of identifying and preventing 
infectious outbreaks rely on reactive measures, 
such as testing, tracing, and isolating [11]. 

However, these methods are often insufficient, 
costly, and time-consuming, resulting in delayed 
responses and uncontrolled spread of infections. 

Therefore, there is a need for a proactive approach
that can leverage data-driven techniques to predict
and prevent infectious hot-spots in urban 
environments.



Synthea: Synthetic Patient Data Generation Tool

❑ Synthea is an open-source tool developed by The MITRE 
Corporation for generating synthetic patient data. This data is not 
based on real individuals, but rather simulates realistic medical 
histories and associated health records.

What it does:
❑ Generates extensive patient data covering 

demographics, diagnoses, procedures, 
medications, allergies, immunizations, social determinants of 
health, and more.

❑ Offers various output formats, including FHIR (Fast Healthcare 
Interoperability Resources), C-CDA (Continuity of Care 
Document), and even DICOM images for simulated medical scans.

❑ Provides configurable population parameters like city, state, age 
range, and desired level of detail, allowing customization based on 
research needs.

Benefits:

•Privacy-friendly: No
real patient data is 
involved, reducing 
privacy concerns and 
regulatory hurdles.

•Large-scale data 
access: Enables 
research using large 
synthetic populations, 
overcoming limitations 
of real-world datasets.

•Customization: Tailor 
data generation to 
specific research 
questions by adjusting 
population 
characteristics and 
health trends.

•Free and open-
source: Accessible to 
everyone, fostering 
research collaboration 
and transparency.

Use cases:

•Testing and 
development of 
healthcare IT systems 
and machine learning 
models.

•Research on 
population 
health, disease 
modeling, and 
healthcare 
interventions.

•Training healthcare 
professionals in data 
analysis and clinical 
decision-making.



Conceptual framework for synthetic EHR generation [12]
• Public Data Approach:

• Leverages publicly available health statistics, avoiding need for real 
EHR access.

• Privacy focused: uses aggregate data, clinical guidelines, and medical 
coding dictionaries.

• Realistic Synthetic EHRs:

• Care maps guide patient journey based on clinician input and clinical 
guidelines.

• Regional data, clinician expertise, and guidelines improve realism.

• Resulting synthetic EHRs (RS-EHRs) suitable for many secondary uses 
(e.g., population studies).

• Synthea and GRiSER Methods:

• Synthea: top-down approach generating skeletal EHRs with FHIR 
standard codes.

• GRiSER: bottom-up approach generating detailed entries for specific 
health problems.

• Both methods contribute to a future comprehensive RS-EHR 
generation system.



Synthea Software Architecture: Example of a patient data

Generic Module Framework:
❑ Encodes models of disease progression and treatment 

as state machines in JSON.
❑ Open and documented for easy extension and 

understanding.
Data Inputs:

❑ Clinical care maps and statistics guide patient journeys.
❑ Census data and configuration options populate the 

synthetic world.

Processing:
❑ Modules calculate state transitions for 

each person in the synthetic world at 
each timestep (default 7 days).

❑ Events happening within a timestep are 
handled promptly.

Outputs:
❑ Transitions trigger various clinical 

events (condition onsets, encounters, 
prescriptions, etc.).



Example of childhood ear infections [12] 

Functionality: 
❑ Simulates ear infections in children based on age.
States:

❑ Infection: Child has an ear infection 
(duration specified).

❑ Pediatrician: Child visits a pediatrician.
Transitions:

❑ Healthy child transitions to infection with 
age-dependent probability.

❑ Infected child transitions to pediatrician for 
diagnosis.

❑ Pediatrician visit leads to 
treatment: antibiotic or painkiller.

Listing 2: Details state definitions in JSON, including:
❑ State names and types.
❑ Attributes (e.g., medical codes for diagnosis).
❑ Transitions to other states with conditions 

and probabilities.



Application of Synthea in patient 
specific graph problem:

• Start: User interacts with NLDS-QL interface.

• Ask Question: User asks a question about the 
Synthea patient graph.

• Generate Queries: NLDS-QL generates one or 
more potential queries based on the user's 
question.

• Refine & Execute: User selects, refines, and 
executes one or more queries.

• Evaluate: User evaluates the results of the query 
execution with a satisfaction rating.

• Explore More: User continues exploring the 
graph by asking new questions or refining 
previous ones [13]



Data 
Statistics for 
our study:

• Selection Criteria: A subset of patients is chosen from the original graph 
based on specific criteria, reducing the number of vertices from 800,000 
to approximately 1000.

• Relationship Consideration: The original Synthea graph likely includes 
edges representing various relationships or connections between 
patients, such as shared medical encounters, family relationships, or 
social interactions. When selecting a subset of patients, some of these 
relationships may be preserved, while others may be omitted based on 
the simulation criteria impacting the resulting graph's structure and 
reducing the number of edges from approximately 2,000,000 to around 
2500. 

• Scaling Effect: Applying a linear scaling approach provides an estimate, 
with the number of vertices for the 1000 patients being approximately 
1000 times smaller than the original, and the number of edges being 
roughly 1000 times smaller as well.

• Graph Connectivity: Changes in the number of vertices may affect the 
graph's overall connectivity and edge density, influencing its structure 
and the number of connections between patients.



Data Structure:



Cohort Attributes:



Problem 
Statement

Given a patient graph, identify cohorts with 
similar disease thresholds (symptoms) such that 
infectious hot-spots can be identified 
prematurely and risk of infection spread in given 
urban setting can be mitigated.



Approach1: Graph Clustering and Hotspot Identification 

Cluster 1 Cluster 2 Cluster 3

Hotspot 1 Hotspot 2 Hotspot 3

(Unpublished work) 



Approach 2: Super node clustering and Hotspot Identification using Edge 
Contraction  

Cluster 1

(Unpublished work) 



Approach 3: Graph Topological Clustering and Hotspot Identification 

P3

P4

P1

P2

(Unpublished work) 



Development 
of LLMs in 
Healthcare

❑Although LLMs have shown impressive performance across a 
range of NLP tasks, their efficacy in specialized tasks is limited
[19].

❑Moreover, there are significant differences between general 
corpora and professional corpora, which further hinder the 
ability of LLMs to perform well in biomedical or clinical
settings [20].

❑To improve domain‐specific performance by addressing these 
weaknesses, domain-specialized LLMs have been developed.

• BioMistral [14]

• ClinicalBERT [3]

• BioBERT [3]

• GatorTron [15]

• Med-PaLM[16] and Med-PaLM 2 [17]

• ChatDoctor[18]



Key takeaways [1]:

Rather than training domain‐specific models from the ground up, further research may seek to fine‐tune
or prompt‐tune these general LLMs to optimize performance in domain-specific clinical settings.  

Using larger open‐source base models and newer interactive LLMs could further improve the 
capabilities of decentralized researchers around the world, who could then fine‐tune LLMs to optimize 
performance for clinical tasks. 

Through fine‐tuning, domain‐specific LLMs may be produced to serve narrowly defined, well‐specified 
tasks—minimizing error and maximizing clinical utility. 

Whether developed from scratch or fine‐tuned using existing models, LLM applications will become more 
sophisticated and begin to impact patients and practitioners at scale.



Graph-Theoretical Framework to 
Optimize the Performance of SLMs



LLMs -> 
SLMs

❑ In recent years, large language models (LLMs) have been widely 
applied in artificial intelligence (AI) driven prompt engineering such 
as question-answering and text summarization functionalities [21].

❑There is a growing interest in small language models (SLMs) for 
resource-constrained application-specific data mining [22]

❑Small Language Models (SLMs) involves much fewer parameters than 
LLMs, offer advantages in terms of reduced carbon emission, short 
training times, and low computational complexity [23]. SLMs
provide quick inference and responses and thus are preferred often
in practice.

❑When an SLM is fine-tuned for a specific domain or task, it can 
provide accurate and contextually-relevant answers to user queries 
[24].

❑The capabilities of SLMs can be significantly improved by 
incorporating knowledge from LLMs. Pre-trained LLMs, which have 
learned high-fidelity information from big data, can transfer valuable 
digested information to SLMs through “fine-tuning”.



Drawbacks of 
Conventional 
Finetuning

To improve the response quality provided by SLMs, the conventional 
model-training procedures often rely on enormous training data.

However, the obvious drawbacks can be found as follows:

❑Training on big datasets demands substantial computational 
power often beyond the capability of any resource-constrained 
system.

❑The tremendous computing resource required by training big 
data implies high operational costs.

❑The incurred extraordinary computational burden turns out to 
be huge carbon emission against the globally demanded green 
computing agenda.

❑Training large datasets usually requires a very long time, thus 
hindering the timeliness of any model deployment for time-
sensitive applications.



Fine-tuning 
under 
resource-
constrained 
scenarios

There exist three primary approaches for fine-tuning SLMs
subject to computational resource constraints, namely:

❑Transfer learning: adopting the pre-trained LLMs or SLMs
and adapting them to specific tasks subject to minimum 
additional training [25–27],

❑Knowledge distillation: transferring knowledge from a 
large teacher model (a pretrained LLM) to a small student 
model (an SLM) by preserving the essential information 
efficiently [28– 30], and

❑Prompt Engineering: crafting specialized users’ prompts 
to guide the responses of an SLM and enabling targeted-
performance improvements [31–33].

Unfortunately, these three approaches suffer from domain 
mismatch, high training complexity, and limited application-
specific knowledge [34].



Training 
Data 
Reduction –
Literature 
attempts

A possible strategy to combat the aforementioned drawbacks of 
the existing approaches is to extract the subset of the tremendous 
training data, which encompasses the essential characteristics of 
the entire dataset. This idea is called training data reduction (TDR).

❑The graph-based heuristic method has been proposed to 
partition a big dataset and select one or a few subsets for 
scalable supervised training to reduce the computation time and 
enhance the overall accuracy across various classification
algorithms [35]. 

❑The TDR scheme has been applied to fine-tune multilingual BERT
models for spoken language understanding [36]. 

❑A data-efficient learning algorithm was introduced, which 
compressed large vision language datasets into a small, high-
quality subset by selecting the representative samples and 
generating the new captions [37]. 



Training Data Reduction – Literature 
attempts

However, the above stated TDR schemes cannot be directly applied to personalized prompt datasets as 
the domain-relevance information among prompts cannot be captured to provide correct responses.

A minimum data augmentation framework for few-shot question-answering was proposed using a 
graph algorithm and an unsupervised question generation mechanism to synthesize the most 

informative training samples from the raw text [39].

A strategy for reducing large datasets for machine learning model training, which involved the 
discretization of data through multidimensional histograms and the reduction of the sample size within 

each bin [38]. 



Problem 
Statement

Given a prompt dataset, consisting of individual 
prompts, what is the optimum subset of 
prompts, one can select to train an SLM so as to 
reduce the training time and simultaneously
achieving a satisfactory data-mining 
performance not much worse than that 
resulting from a prominent LLM.



Fine-tuning optimization

The primary contributions made so far can be summarized as follows:

❑ A graph-theoretical approach to extract the semantic, contextual, and domain-
relevance relationships among users’ prompts is developed. This approach can be 
applied to any large prompt datasets of multiple domains. 

❑The conventional clique-finding paradigm is extended for TDR and the proposed 
scheme is evaluated for the GPT-2 model (an SLM) involving 117 million parameters
trained by three artificial prompt datasets crafted for domain experts such as 
clinicians, bio-informatics scientists, AI/ML engineers, and data scientists. 

❑The time-complexity analysis is studied for the proposed TDR scheme.

❑The conventional paradigm trained by at least 70% of the training data is compared
with the proposed TDR approach. The proposed approach shows the on-par and 
better performance than the conventional method in terms of BERTScore [40].



Preliminaries

Definition 1: Prompt Semantic Measure Ψ(A, B): The prompt 
semantic measure Ψ(A, B) is defined by the degree of similarity 
or relatedness in meaning between two prompts PA and PB based 
on their respective semantic embeddings [41].

Where,

- denotes the inner-product

- denotes the vector norm

- Represents semantic word embeddings of Prompts PA and PB



Preliminaries

Definition 2: Prompt Contextual Measure ∆(A, B): The 
prompt contextual measure ∆(A, B)) is defined by the 
degree of similarity or relatedness between two prompts 
PA and PB based on their contextual embeddings [42].

Where,

- denotes the inner-product

- denotes the vector norm

- Represents contextual embeddings of Prompts PA and PB



Preliminaries

Definition 3: (Prompt Graph GP(η, ρ)): A prompt dataset can be 
transformed into the corresponding prompt graph, say GP(η, ρ) = 
(V, Eη,ρ), where the vertex set V consists of all prompts in P, i.e., 
V = P,

while there exists an edge between Pi and Pj (Pi , Pj ∈ V)

If:

• the respective prompt semantic measure Ψ(i, j)≥η,

• the respective prompt contextual measure ∆(i, j)≥ρ, and

• Pi and Pj belong to the same domain or subject area, i.e., 
Pi Pj .

Note that η and ρ here are called the semantic and contextual
relevance thresholds, respectively.



Preliminaries

Definition 4: (Maximal Clique and Maximum Clique): A maximal clique, of GP(η, ρ) represents a 
clique from which no further extension of node(s) is possible to form a bigger clique containing 
extra node(s). Furthermore, a maximum clique is one of the maximal cliques of GP(η, ρ), which 
has the largest number of vertices (graph order).

Definition 5: (Union of Maximum Cliques’ Vertices (UMCV) Vu(P:Θ)) Given a prompt dataset P, 
one can form various prompt graphs as subject to Q pairs of ηq and ρq for q=1, 2, . . ., Q 
according to Definition 3. Furthermore, one can find the respective maximum cliques for q=1, 4 
2, . . ., Q according to Definition 4. The union of maximum cliques’ vertices UMCV Vu(P) is thus 
defined by

Where,



Proposed 
Framework

Proposed graph-theoretical framework for 
prompt dataset reduction, includes three key 
mechanisms: 

❑Relevance thresholds determination, 

❑Prompt graph construction, and

❑Graph-theoretical TDR scheme.



Proposed Framework -
Relevance Thresholds 
Determination

For a given prompt dataset P:

Step:1 Obtain prompt semantic measure
(according to Definition 1) and prompt contextual 
measure (according to Definition 2) for all pairs of 
prompts

Step:2 Then compute the mean, first quartile 
(Q1), second quartile (Q2), and third quartile (Q3)
values of prompt semantic measure and prompt 
contextual measure for the entire prompt dataset
P. These values form the set of relevance 
thresholds Θ.



Proposed Framework- Prompt Graph 
Construction

For a given prompt dataset P and the set of relevance thresholds Θ :

Step:1 Treat each prompt in P as a vertex V

Step:2 Form edge set such that Eη,ρ for any two distinct vertices (prompts) in V, the 
corresponding edge weight is set to be 1 if prompt semantic measure Ψ(i, j)≥η and 
prompt contextual measure ∆(i, j)≥ρ and prompts Pi and Pj belong to the same domain or 
subject area, i.e., Pi Pj

Likewise, we obtain four prompt graphs.



Proposed 
Framework-
Graph-
Theoretical 
TDR 
Scheme

For each prompt graph,

Step:1 Obtain maximum clique using Bron-Kerbosch 
algorithm [43] or the approximate maximum-clique 
finding algorithm (for a large graph order) [44]. 

Step:2 Obtain UMCV Vu(P:Θ) (according to Definition 
5). 

Step:3 The optimal set of prompts are nothing but 
Vu(P:Θ).



Simulation –
Data 
Acquisition

❑Proposed TDR approach is evaluated on 
fine-tuning GPT-2 [45] language model 
involving 117 million parameters with three 
artificial prompt datasets.

❑ChatGPT was used to generate three 
batches of artificial question-answering
prompt data (approximately uniformly 
distributed user-persona-specific prompts
over four different categories) of size 100, 
500, and 1000 prompts crafted for four 
domain experts: clinicians, bio-informatics 
scientists, AI/ML engineers, and data 
scientists.



Simulation 
–
Application 
of proposed 
TDR 
approach

MISTRAL 7B model [46] was used to infer which prompts 
Pi and Pj in a prompt dataset P belong to the same domain 
or subject area, i.e., Pi Pj

Then the same model was used to generate the “ground 
truth” for the BERTScore evaluation of the question-
answering task.

Then, the set of relevance thresholds Θ is obtained using 
key mechanism (Relevance thresholds determination).

Using the above information four prompt graphs are 
obtained by implementing key mechanism (Prompt graph 
construction).

Finally, maximum cliques are computed and the optimal 
set of prompts UMCV Vu(P:Θ) is obtained using key 
mechanism (Graph-theoretical TDR scheme). 



Results and Discussion- Actual Run-time comparison  

Fine-Tuning Optimization of Small Language Models: A Novel Graph-Theoretical Approach for Efficient Prompt 
Engineering  (submitted)



Results and Discussion- BERT Score Performance 
Evaluation  

Fine-Tuning Optimization of Small Language Models: A Novel Graph-Theoretical Approach for Efficient Prompt 
Engineering  (submitted)



Future work

❑Designing a dynamic edge contraction TDR 
scheme to further reduce the run-time of the 
proposed framework.

❑Develop a Graph topological compression TDR 
scheme using Topological GNNs [] to facilitate 
the reduction of large-scale corpus knowledge 
graphs.  

❑Explore computational-geometry approaches 
such as Voronoi partition, Delaunay 
triangulation to pre-partition the large-scale 
graphs and design a novel graph topological 
compression TDR mechanisms. 
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